Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[1-(Methylsulfanyl)naphtho[2,1-b]furan-2-yl]acetic acid

Hong Dae Choi,^a Pil Ja Seo,^a Byeng Wha Son^b and Uk Lee^{b_*}

^aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and ^bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Received 6 January 2008; accepted 10 January 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; *R* factor = 0.051; *wR* factor = 0.224; data-to-parameter ratio = 12.7.

The title compound, $C_{15}H_{12}O_3S$, was prepared by alkaline hydrolysis of ethyl 2-{1-(methylsulfanyl)naphtho[2,1-*b*]furan-2-yl}acetate. The crystal structure is stabilized by $CH_2-H\cdots\pi$ interactions between the methyl H atoms of the methyl-sulfanyl substituent and the central benzene ring of the naphthofuran system, and by inversion-related intermolecular $O-H\cdots O$ hydrogen bonds between the carboxyl groups.

Related literature

For the crystal structures of similar 1-(methylsulfanyl)-naphtho[2,1-*b*]furan compounds, see: Choi *et al.* (2006, 2007).

Experimental

Crystal data $C_{15}H_{12}O_3S$ $M_r = 272.32$

Monoclinic, $P2_1/n$ a = 4.989 (2) Å b = 14.265 (5) Å c = 18.344 (7) Å $\beta = 90.18 (2)^{\circ}$ $V = 1305.5 (9) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD diffractometer Absorption correction: none 8459 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ 174 parameters $wR(F^2) = 0.224$ H-atom parameters constrainedS = 1.24 $\Delta \rho_{max} = 1.09$ e Å $^{-3}$ 2209 reflections $\Delta \rho_{min} = -1.45$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C2/C3/C8-C11 benzene ring.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{array}{c} 03-H3\cdots O2^{i}\\ C15-H15B\cdots Cg^{ii}\end{array}}$	0.82 0.96	1.91 3.03	2.711 (4) 3.949 (3)	167 161
Symmetry codes: (i) -x	x + 2, -y + 1, -	$-z;$ (ii) $-x + \frac{3}{2},$	$y + \frac{1}{2}, -z + \frac{1}{2}.$	

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2074).

References

- Brandenburg, K. (1998). *DIAMOND*. Version 2.1. Crystal Impact GbR, Bonn, Germany.
- Bruker (2001). *SMART* (Version 5.625) and *SAINT* (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o5876o5877.
- Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o2895.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Mo $K\alpha$ radiation $\mu = 0.25 \text{ mm}^{-1}$

 $0.45 \times 0.28 \times 0.09$ mm

2209 independent reflections

1130 reflections with $I > 2\sigma(I)$

T = 296 (2) K

 $R_{\rm int} = 0.115$

supplementary materials

Acta Cryst. (2008). E64, 0453 [doi:10.1107/S1600536808000901]

2-[1-(Methylsulfanyl)naphtho[2,1-b]furan-2-yl]acetic acid

H. D. Choi, P. J. Seo, B. W. Son and U. Lee

Comment

As part of our ongoing studies on the synthesis and structure of 1-(methylsulfanyl)naphtho[2,1-*b*]furan derivatives, we have recently described 7-bromo-1-methylsulfanyl-2-phenylnaphtho[2,1-*b*]furan (Choi *et al.*, 2006) and 2-(4-bromophenyl)-1-(methylsulfanyl)naphtho[2,1-*b*]furan (Choi *et al.*, 2007). Herein we report the molecular and crystal structure of the title compound, 2-{1-(methylsulfanyl)naphtho[2,1-*b*]furan-2-yl}acetic acid (Fig. 1).

The naphthofuran unit is essentially planar, with a mean deviation of 0.017Å from the least-squares plane defined by the thirteen constituent atoms. The crystal packing (Fig. 2) is stabilized by CH_2 —H··· π interactions, with a C15—H15B···*Cg* separation of 3.03Å (*Cg* is the centroid of the C2/C3/C8/C9/C10/C11 benzene ring; symmetry code as in Fig. 2). Classical inversion- related O3–H3···O2ⁱ hydrogen bonds link the carboxyl groups of adjacent molecules (Table and Fig. 2).

Experimental

Ethyl 2-{1-(methylsulfanyl)naphtho[2,1-*b*]furan-2-yl}acetate (600 mg, 2.0 mmol) was added to a solution of potassium hydroxide (561 mg, 10.0 mmol) in water (20 ml) and methanol (20 ml). The mixture was refluxed for 4 h and then cooled. Water was added, and the solution was washed with chloroform. The aqueous layer was acidified to pH 1 with concentrated hydrochloric acid and then extracted with chloroform, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (hexane/ethyl-acetate, 1:1 v/v) to afford the title compound as a colourless solid [yield 82%, m.p. 436–437 K; $R_f = 0.62$ (hexane/ethyl-acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a dilute solution of the title compound in diisopropyl ether at room temperature.

Spectroscopic analysis: ¹H NMR (CDCl₃, 400 MHz) δ 2.39 (s, 3H), 4.17 (s, 2H), 7.49–7.54 (m, 1H), 7.60–7.67 (m, 2H), 7.74 (d, J = 9.16 Hz, 1H), 7.95 (d, J = 7.68 Hz, 1H), 9.18 (d, J = 8.44 Hz, 1H), 11.02 (s, 1H); EI–MS 272 [*M*⁺].

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aromatic H atoms, C–H = 0.96 Å for methyl H atoms, C–H = 0.97 Å for methylene H atoms, and O–H = 0.82 Å, respectively, and with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic and methylene H atoms, $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $U_{iso}(H) = 1.5U_{eq}(O)$ for caroxylic H atom.

The highest peak (1.088 e Å⁻³) in the difference map is 0.97Å from S and the largest hole ($-1.449 \text{ e} \text{ Å}^{-3}$) is 0.21Å from S.

Figures

Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoides are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2. The C–H··· π interaction and O–H···O hydrogen bond (dotted lines) in the title compound. *Cg* denotes ring centroids. [Symmetry code: (i) -x + 2, -y + 1, -z; (ii) -x + 3/2, y + 1/2, -z + 1/2; (iii) -x + 3/2, y - 1/2, -z + 1/2.]

2-{1-(Methylsulfanyl)naphtho[2,1-b]furan-2-yl}acetic acid

Crystal data	
$C_{15}H_{12}O_{3}S$	$F_{000} = 568$
$M_r = 272.32$	$D_{\rm x} = 1.385 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 436-437 K
Hall symbol: -P 2yn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 4.989 (2) Å	Cell parameters from 3886 reflections
b = 14.265 (5) Å	$\theta = 2.2 - 27.9^{\circ}$
c = 18.344 (7) Å	$\mu = 0.25 \text{ mm}^{-1}$
$\beta = 90.18 \ (2)^{\circ}$	T = 296 (2) K
$V = 1305.5 (9) \text{ Å}^3$	Plate, silver
Z = 4	$0.45\times0.28\times0.09~mm$

Data collection

Bruker SMART CCD diffractometer	2209 independent reflections
Radiation source: fine-focus sealed tube	1130 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.115$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 25.5^{\circ}$
T = 296(2) K	$\theta_{\min} = 1.8^{\circ}$
φ and ω scans	$h = -6 \rightarrow 4$
Absorption correction: none	$k = -17 \rightarrow 17$
8459 measured reflections	$l = -22 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.051$ H-atom parameters constrained $wR(F^2) = 0.224$ $w = 1/[\sigma^2(F_o^2) + (0.1148P)^2]$ $where P = (F_o^2 + 2F_c^2)/3$ S = 1.24 $(\Delta/\sigma)_{max} < 0.001$ 2209 reflections $\Delta\rho_{max} = 1.09$ e Å⁻³174 parameters $\Delta\rho_{min} = -1.45$ e Å⁻³Primary atom site location: structure-invariant direct

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. The s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and isor	ropic or	eauivalent	isotropic	displ	acement	parameters ($(\AA^2$)
1		000.0000000				10011 op10	ww.pr	creente contente	p	(/

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
S	0.7770 (3)	0.81307 (6)	0.19046 (5)	0.0475 (5)
01	1.1260 (7)	0.57778 (15)	0.25355 (14)	0.0476 (9)
02	0.8997 (7)	0.5410 (2)	0.08670 (16)	0.0591 (9)
03	1.2812 (7)	0.5715 (2)	0.02196 (17)	0.0637 (10)
Н3	1.2206	0.5315	-0.0056	0.096*
C1	0.8881 (9)	0.7104 (2)	0.23497 (18)	0.0371 (10)
C2	0.8115 (10)	0.6749 (2)	0.30727 (18)	0.0378 (11)
C3	0.6288 (10)	0.7029 (2)	0.36497 (19)	0.0417 (11)
C4	0.4543 (10)	0.7812 (3)	0.3628 (2)	0.0487 (12)
H4	0.4531	0.8190	0.3215	0.058*
C5	0.2867 (13)	0.8034 (3)	0.4195 (3)	0.0629 (15)
Н5	0.1742	0.8551	0.4156	0.076*
C6	0.2828 (11)	0.7483 (3)	0.4842 (2)	0.0604 (13)
Н6	0.1703	0.7641	0.5226	0.073*
C7	0.4471 (13)	0.6718 (3)	0.4889 (2)	0.0589 (16)
H7	0.4450	0.6353	0.5310	0.071*
C8	0.6247 (11)	0.6465 (2)	0.4295 (2)	0.0459 (12)
C9	0.7927 (11)	0.5650 (2)	0.4337 (2)	0.0529 (13)
Н9	0.7865	0.5284	0.4757	0.063*
C10	0.9638 (12)	0.5385 (2)	0.3780 (2)	0.0520 (13)
H10	1.0721	0.4857	0.3820	0.062*
C11	0.9664 (10)	0.5950 (2)	0.31502 (19)	0.0402 (10)
C12	1.0731 (10)	0.6499 (2)	0.20589 (19)	0.0403 (11)
C13	1.2273 (9)	0.6483 (2)	0.1351 (2)	0.0457 (12)

supplementary materials

H13A	1.4123	0.6325	0.1458	0.055*
H13B	1.2257	0.7110	0.1146	0.055*
C14	1.1236 (10)	0.5807 (2)	0.0778 (2)	0.0423 (11)
C15	0.9473 (11)	0.9017 (2)	0.2426 (3)	0.0734 (17)
H15A	0.8677	0.9062	0.2900	0.110*
H15B	0.9321	0.9609	0.2181	0.110*
H15C	1.1331	0.8853	0.2475	0.110*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	0.0597 (9)	0.0476 (5)	0.0353 (6)	0.0031 (6)	-0.0090 (7)	0.0046 (3)
01	0.0544 (19)	0.0403 (10)	0.0479 (15)	0.0044 (16)	-0.011 (2)	-0.0052 (10)
02	0.0561 (19)	0.0729 (17)	0.0483 (17)	-0.019 (2)	0.002 (2)	-0.0139 (14)
03	0.058 (2)	0.0800 (19)	0.0536 (18)	-0.010 (2)	0.000 (2)	-0.0234 (15)
C1	0.041 (2)	0.0385 (13)	0.0316 (16)	-0.001 (2)	-0.005 (2)	-0.0046 (12)
C2	0.041 (3)	0.0375 (14)	0.0344 (19)	-0.004 (2)	-0.009 (3)	-0.0031 (12)
C3	0.046 (3)	0.0429 (14)	0.0355 (18)	-0.009 (2)	-0.012 (3)	-0.0047 (13)
C4	0.048 (3)	0.0574 (18)	0.041 (2)	0.006 (3)	-0.008 (3)	-0.0054 (15)
C5	0.059 (3)	0.069 (2)	0.062 (3)	0.008 (3)	-0.015 (4)	-0.015 (2)
C6	0.053 (3)	0.079 (3)	0.049 (2)	-0.006 (4)	0.008 (3)	-0.019 (2)
C7	0.079 (4)	0.065 (2)	0.0334 (19)	-0.026 (3)	0.006 (3)	-0.0025 (15)
C8	0.052 (3)	0.0489 (16)	0.0368 (18)	-0.015 (2)	-0.008 (3)	-0.0018 (13)
C9	0.072 (4)	0.0483 (16)	0.0379 (19)	-0.008 (3)	-0.012 (3)	0.0079 (13)
C10	0.068 (3)	0.0392 (14)	0.049 (2)	0.003 (2)	-0.016 (3)	0.0025 (14)
C11	0.044 (2)	0.0384 (13)	0.0385 (18)	0.002 (2)	-0.006 (3)	-0.0056 (13)
C12	0.044 (3)	0.0403 (14)	0.0361 (18)	-0.006 (2)	-0.005 (3)	-0.0047 (12)
C13	0.044 (3)	0.0508 (17)	0.042 (2)	-0.008 (2)	0.003 (3)	-0.0109 (14)
C14	0.045 (3)	0.0474 (16)	0.0343 (18)	0.004 (2)	0.000 (3)	-0.0064 (14)
C15	0.082 (4)	0.0414 (16)	0.096 (3)	-0.006 (3)	-0.040 (4)	0.0067 (18)

Geometric parameters (Å, °)

1.766 (3)	C6—C7	1.368 (7)
1.797 (4)	С6—Н6	0.9300
1.375 (4)	С7—С8	1.453 (7)
1.404 (5)	С7—Н7	0.9300
1.263 (5)	C8—C9	1.435 (6)
1.300 (5)	C9—C10	1.386 (7)
0.8200	С9—Н9	0.9300
1.372 (6)	C10—C11	1.410 (5)
1.471 (5)	C10—H10	0.9300
1.384 (5)	C12—C13	1.512 (6)
1.455 (6)	C13—C14	1.516 (4)
1.417 (6)	C13—H13A	0.9700
1.431 (5)	C13—H13B	0.9700
1.373 (7)	C15—H15A	0.9600
0.9300	C15—H15B	0.9600
1.423 (7)	C15—H15C	0.9600
	1.766 (3) 1.797 (4) 1.375 (4) 1.404 (5) 1.263 (5) 1.300 (5) 0.8200 1.372 (6) 1.471 (5) 1.384 (5) 1.455 (6) 1.417 (6) 1.417 (6) 1.373 (7) 0.9300 1.423 (7)	1.766 (3) $C6-C7$ 1.797 (4) $C6-H6$ 1.375 (4) $C7-C8$ 1.404 (5) $C7-H7$ 1.263 (5) $C8-C9$ 1.300 (5) $C9-C10$ 0.8200 $C9-H9$ 1.372 (6) $C10-C11$ 1.471 (5) $C10-H10$ 1.384 (5) $C12-C13$ 1.455 (6) $C13-H13A$ 1.417 (6) $C13-H13B$ 1.373 (7) $C15-H15B$ 1.423 (7) $C15-H15C$

С5—Н5	0.9300		
C1—S—C15	100.99 (18)	C10—C9—C8	122.8 (3)
C12—O1—C11	105.7 (3)	С10—С9—Н9	118.6
С14—О3—Н3	109.5	С8—С9—Н9	118.6
C12—C1—C2	108.2 (3)	C9—C10—C11	117.1 (4)
C12—C1—S	123.5 (3)	C9—C10—H10	121.4
C2—C1—S	128.3 (3)	C11—C10—H10	121.4
C11—C2—C3	120.1 (3)	C2—C11—O1	112.3 (3)
C11—C2—C1	103.2 (4)	C2-C11-C10	123.3 (4)
C3—C2—C1	136.7 (3)	O1—C11—C10	124.4 (4)
C4—C3—C8	117.1 (4)	C1—C12—O1	110.6 (4)
C4—C3—C2	125.6 (3)	C1—C12—C13	133.5 (3)
C8—C3—C2	117.3 (4)	O1—C12—C13	115.9 (3)
C5—C4—C3	122.4 (4)	C12—C13—C14	115.6 (4)
С5—С4—Н4	118.8	C12—C13—H13A	108.4
C3—C4—H4	118.8	C14—C13—H13A	108.4
C4—C5—C6	121.0 (5)	C12—C13—H13B	108.4
С4—С5—Н5	119.5	C14—C13—H13B	108.4
С6—С5—Н5	119.5	H13A—C13—H13B	107.4
C7—C6—C5	118.9 (5)	O2—C14—O3	126.5 (3)
С7—С6—Н6	120.5	O2—C14—C13	119.7 (4)
С5—С6—Н6	120.5	O3—C14—C13	113.8 (4)
C6—C7—C8	121.2 (4)	S-C15-H15A	109.5
С6—С7—Н7	119.4	S-C15-H15B	109.5
С8—С7—Н7	119.4	H15A—C15—H15B	109.5
C3—C8—C9	119.4 (4)	S-C15-H15C	109.5
C3—C8—C7	119.4 (4)	H15A—C15—H15C	109.5
C9—C8—C7	121.2 (4)	H15B—C15—H15C	109.5
C15—S—C1—C12	-106.1 (4)	C3—C8—C9—C10	0.9 (6)
C15—S—C1—C2	72.4 (4)	C7—C8—C9—C10	179.8 (4)
C12—C1—C2—C11	1.0 (4)	C8—C9—C10—C11	-0.5 (6)
S-C1-C2-C11	-177.7 (3)	C3—C2—C11—O1	178.7 (3)
C12—C1—C2—C3	-178.8 (4)	C1—C2—C11—O1	-1.1 (4)
S-C1-C2-C3	2.5 (7)	C3—C2—C11—C10	-1.8 (6)
C11—C2—C3—C4	-178.0 (4)	C1—C2—C11—C10	178.4 (4)
C1—C2—C3—C4	1.7 (7)	C12—O1—C11—C2	0.9 (4)
C11—C2—C3—C8	2.0 (5)	C12—O1—C11—C10	-178.6 (4)
C1—C2—C3—C8	-178.3 (4)	C9—C10—C11—C2	1.0 (6)
C8—C3—C4—C5	0.0 (6)	C9-C10-C11-O1	-179.5 (3)
C2—C3—C4—C5	180.0 (4)	C2-C1-C12-O1	-0.5 (4)
C3—C4—C5—C6	0.6 (6)	S-C1-C12-O1	178.3 (3)
C4—C5—C6—C7	-0.7 (7)	C2-C1-C12-C13	-179.2 (4)
C5—C6—C7—C8	0.3 (7)	S-C1-C12-C13	-0.4 (6)
C4—C3—C8—C9	178.5 (4)	C11—O1—C12—C1	-0.2 (4)
C2—C3—C8—C9	-1.5 (5)	C11—O1—C12—C13	178.7 (3)
C4—C3—C8—C7	-0.4 (5)	C1—C12—C13—C14	-102.7 (5)
C2—C3—C8—C7	179.6 (4)	O1—C12—C13—C14	78.6 (4)
C6—C7—C8—C3	0.3 (6)	C12—C13—C14—O2	10.5 (5)

supplementary materials

C6—C7—C8—C9	-178.6 (4)	C12—C13—C14—O3		-170.9 (3)			
Hydrogen-bond geometry (Å, °)							
D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A			
O3—H3····O2 ⁱ	0.82	1.91	2.711 (4)	167			
C15—H15B…Cg ⁱⁱ	0.96	3.03	3.949 (3)	161			
Symmetry codes: (i) $-x+2$, $-y+1$, $-z$; (ii) $-x+3/2$, $y+1/2$, $-z+1/2$.							

Fig. 1

